Discrete convexity and polynomial solvability in minimum 0-extension problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Discrete Convexity and Polynomial Solvability in Minimum 0-Extension Problems

The minimum 0-extension problem 0-Ext[Γ ] on a graph Γ is: given a set V including the vertex set VΓ of Γ and a nonnegative cost function c defined on the set of all pairs of V , find a 0-extension d of the path metric dΓ of Γ with ∑ xy c(xy)d(x, y) minimum, where a 0-extension is a metric d on V such that the restriction of d to VΓ coincides with dΓ and for all x ∈ V there exists a vertex s in...

متن کامل

Discrete Convexity for Multiflows and 0-extensions

This paper addresses an approach to extend the submodularity and L-convexity concepts to more general structures than integer lattices. The main motivations are to give a solution of the tractability classification in the minimum 0-extension problem and to give a discrete-convex-analysis view to combinatorial multiflow dualities.

متن کامل

Polynomial solvability of $NP$-complete problems

A polynomial algorithm for solving the ”Hamiltonian circuit” problem is presented in the paper. Computational complexity of the algorithm is equal to O ( n log 2 n ) where n is the cardinality of the observed graph vertex set. Thus the polynomial solvability for NP -complete problems is proved.

متن کامل

Solvability of Discrete Neumann Boundary Value Problems

In this article we gain solvability to a nonlinear, second-order difference equation with discrete Neumann boundary conditions. Our methods involve new inequalities on the right-hand side of the difference equation and Schaefer’s theorem in the finitedimensional space setting. Running Head: Discrete BVPs AMS Subject Code: 39A12, 34B15 Corresponding Author: C C Tisdell

متن کامل

Solvability of discrete Neumann boundary value problems

In this article we gain solvability to a nonlinear, second-order difference equation with discrete Neumann boundary conditions. Our methods involve new inequalities on the right-hand side of the difference equation and Schaefer’s Theorem in the finite-dimensional space setting. © 2006 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2014

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-014-0824-7